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Abstract

A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender
wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in
"capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at
high angles of attack. The method is based on atetrahedral unstructured grid technology developed at the NASA
Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented
to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case
concerns vortex flow over a simple 65° delta wing with different values of leading-edge radius. Although the
geometry is quite simple, it poses a chalenging problem for computing vortices originating from blunt leading
edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions
in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons
with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly
sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying
CFD methods to such complicated flow problems.

Introduction

Study of slender wings and bodies flying at high angles of attack has long been of interest for the design of
advanced flight vehicles such as highly agile fighters, supersonic commercial airplanes, aerospace vehicles, and
guided missiles. A common characteristic of flows over such vehicles is the induced aerodynamic forces and
moments due to formation of vortices usually emitted from the leading edges of lifting surfaces or the smooth
surface of dender bodies. These vortices induce strong swirling velocity fields that create regions of low
pressure near the surface. An important effect of such flows on flight vehicles is the generation of additional
aerodynamic load known as the "vortex lift".

The beneficial effects of vortices have been exploited by the airplane designers for achieving high lift during
takeoff/landing and enhancing the maneuverability of the advanced fighters over the past three decades. More
recently, the advent of the chined and facetted airplanes has revived the interest in vortical flows for improving
the design of low-observable aircraft and maximizing their performance. Despite the significant research (mainly
experimental) during the past severa years, many aspects of the vortical flows and the complex interactions of
vortices are still unknown to the aerodynamic scientists. Vortical flows, if not properly understood and
controlled, may manifest themselves as undesirable aerodynamic effects which can severely influence the flight
stability as well as the fatigue life of the aircraft structure [1]. Consequently, there is a continued need for better
understanding of vortex flow characteristics such as induced unsteady and asymmetric flows, unexpected vortex
breakdown, and complex interactions of vortices with each other, shock waves, and airframe components. A
thorough understanding of the vortex flow behavior would help the designers to develop more effective means
for controlling these flow phenomena and better exploit their benefits to enhance the aircraft performance and
maneuverability.

Paper presented at the RTO AVT Symposium on “ Advanced Flow Management: Part A —Vortex Flows and
High Angle of Attack for Military Vehicles”, held in Loen, Norway, 7-11 May 2001, and published in RTO-MP-069(1).
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The experimental study of aircraft aerodynamics provides the most reliable information about the vortex flow
behavior. However, accurate experimentation in the wind- or water-tunnels requires extensive amount of time,
effort, and expense. On the other hand, the capabilities of computational techniques have steadily improved over
the years, but their applications are often limited to relatively uncomplicated vortical flows. Despite
considerable CFD advances accomplished on the subject in the past, there is still a need for more research,
development, and extensive validation of computational methods to further substantiate their viability for solving
complex vortex flows. During the past several years, there has been an outbreak of hew CFD developments,
providing the researchers with a variety of solution techniques. Different computational methods involve various
degrees of approximation (and thus uncertainty) depending on their level of complexity. To effectively apply a
solution technique to a particular vortex flow problem, one should have a basic understanding of the problem at
hand and the capability of the computational tool at his/her disposal.

The formation of vortices on slender configurations is essentially triggered by the separation of flow and
subsequent shedding of vorticity from the lifting surfaces [2]. For example, the separation of flow from the
leading edge of a swept-back wing sheds vorticity that forms into a free shear layer. This layer coils into a
helical structure surrounding a concentrated core that gects flow downstream. Although vortex flows are
inherently viscous, the bulk of the swirling flow outside the boundary layer can be assumed non-dissipative and
irrotational except at the vortex core[3]. Therefore, once avortex flow is established, it may be simulated by the
potential flow approximation and simplified mathematical models. The Euler equations, on the contrary, are
capable of computing rotational flows and can actually "capture" the formation of vortices from the "sharp”
leading edges of lifting surfaces. The separation and rolling effect of the free shear layer in such cases are
primarily induced by the geometry (regardless of the flow properties) which enable the Euler equations to predict
the generation of vortices. The Euler equations can also predict the complex phenomenon of vortex breakdown.
The stability of the vortex core is highly sensitive to the axia pressure gradient along the core [3], which is
predictable by the Euler equations. The inviscid flow approximation is, however, limited to relatively simple
cases of vortex flow. For example, the development of a vortex from a smooth surface (e.g., blunt leading edge)
depends on the Reynolds number effects and, thus, requires modeling of the full viscous flow. In addition, a
strong primary vortex often creates a lateral adverse pressure gradient on the surface, which may induce a
secondary separation of the boundary layer and an additional vortex. This secondary vortex, rotating in the
opposite direction sense of the primary vortex, may lead to yet another adverse pressure gradient and a tertiary
vortex (see Fig. 1). The underlying cause of these additional vortices is viscous-dominated and, obviously,
cannot be predicted with the potential flow approximation or the Euler equations even on sharp edges.
Furthermore, vortical flows at very high angles of attack usually involve large regions of flow separation on the
upper surface that influence the axial pressure gradient and, thus, the burst of the vortex core. Being inadequate
to account for the flow separation and its effects, the Euler equations may predict the onset of the vortex burst
incorrectly and, therefore, produce a misleading solution. Accurate prediction of such complex flows requires
advanced CFD tools based on the full Navier-Stokes equations.

The primary objective of this paper is to evaluate the suitability of a CFD method for solving vortex flows
around slender configurations. The method is based on an unstructured-grid technology developed at the NASA
Langley Research Center. The emphasisis particularly focused on the application of an adaptive grid refinement
technique for resolving concentrated vortices. Several adapted as well as conventional unadapted solutions are
presented for two vortex-flow problems: flow over a simple delta wing and a generic fighter configuration
simulated at a high angle of attack. The grid adaptation has been fully implemented for generating inviscid
solutions but applied only to the grid segments outside the boundary layer for obtaining viscous solutions. The
full extension of the adaptive grid technology for computing viscous flows is currently under way.
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Computational Method

The unstructured grid methodology has gained increasing popularity in the CFD community during the recent
years. Two salient features of unstructured grids have contributed to this overwhelming recognition: 1) the
inherent flexibility of the grid structure for discretizing complex domains and 2) the convenience with which the
generated grids can be post-processed and modified. While the former reduces the computational cycle time by
nearly an order of magnitude for a typical complex configuration, the latter facilitates the implementation of
automatic grid adaptation to the flow and/or geometric features. Adaptive meshing is a powerful tool in CFD
that substantially enhances the accuracy, efficiency, and automation of the numerical methods.

For the past several years, a coordinated activity has been underway at the NASA Langley Research to
develop an integrated system of unstructured grid codes. The primary objective of this team effort was to bring
the state-of-the-art in CFD to a higher level of usability in the design environment. The outcome has been a
system of user-friendly software referred to as TetrUSS [4]. The system consists of a tetrahedral grid generation
package (GridTool and VGRIDns), an Euler and Navier-Stokes solver (USM3D), a post-processing analysis
code (ViGPLOT), and severa other tools and extensions of the codes for solving specific problems. Although
these codes are often used in combination, the TetrUSS system is modular alowing external unstructured grid
codes to be used within the system synergistically.

The results presented in this paper have been produced using TetrUSS along with an adaptive grid refinement
technique developed recently as an extension to the system. A brief description of the TetrUSS components is
presented below for completeness. Further information about the underlying methodology can be found in the
cited references.

Grid Generation

The unstructured grid code VGRIDns generates single-block, tetrahedral grids for both the Euler and Navier-
Stokes computations. The grid generation method is based on the Advancing-front [5] and the Advancing-layers
[6] technigues. Both techniques resemble marching procedures by which tetrahedral cells grow in the
computational field from a triangular surface mesh (initial front). The advancing process continues until the
entire domain is filled with contiguous tetrahedral cells. The advancing-front technique inserts individual cells
in the inviscid portion of the flow field in an irregular fashion. The lack of an apparent order in which the grid is
generated contributes to the flexibility of the method. On the contrary, the advancing layers method generates
thin layers of tetrahedral cells packed in the boundary-layer region in a more orderly manner. The systematic
way of generating grids by the advancing layers method is favored for the ease of generation and better quality of
tetrahedral cells in the boundary layer. The distribution of grid points on the surface and in the field is
accomplished by means of some user-prescribed source elements and the solution to a Poisson equation on a
"transparent” background grid [7].

The geometry of interest, to be gridded, is first defined in terms of a set of bi-linear parametric and/or non-
uniform rational B-spline (NURBS) surface patches using the graphical grid-utility code GridTool [8]. The
source elements for clustering grid points are also defined and placed in the domain with GridTool. The
individual surface patches are then triangulated with VGRIDns using the two-dimensional (2D) versions of the
advancing-front and advancing-layers methods in the parametric frames. The collection of all triangulated
patches forms the surface mesh (or the initial front) for generating the three-dimensional (3D) volume grid.
Some salient features of the VGRIDns system include a grid restart capability, local remeshing [9], grid
movement [10], and generating anisotropic stretched grids [11]. The grid stretching capability is an important
feature of VGRIDns by which grid points can be clustered differently in various directions producing stretched
grid elements. Theresult is areduction in the cell count by a factor of three without losing the grid resolution in
essential directions.
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Flow Solution

USM3Dns is a tetrahedral cell-centered, finite volume Euler and Navier-Stokes solver. The inviscid flux
guantities are computed across the cell faces using the Roe's flux-difference splitting scheme, and the spatial
discretisation is accomplished by a novel analytical reconstruction process [12]. The solution is advanced in
time to steady state using an implicit backward-Euler time-stepping scheme. Flow turbulence is modeled by the
Spalart-Allmaras one-equation model, which is optionally coupled with awall function to reduce the number of
cells in the sublayer of the boundary layer. All computations presented in this paper were performed using the
wall-function feature of USM3Dns run in afully turbulent mode.

USM3Dns runs on massively paralel computers and on vector processors, such as the Cray super-computers,
with multi-tasking. The paralel version of the code has aso been ported to personal computer (PC) clusters.
The code requires 175 eight-bit words of memory per tetrahedron. It runs with a speed of 34
psec/cell/cycle/processor on a Cray C90 and 230 psec/cell/cycle/processor on the SGI Origin 2000 parallel
computer.

USM3Dns supports standard boundary conditions such as the flow tangency, no-dip solid surface,
characteristic inflow/outflow (for subsonic flows), and freestream-inflow/extrapolation-outflow (for supersonic
flows). In addition, some specia boundary conditions including wall functions, wake flow, jet engine, and
propeller are available in the code. The flow analysis capability of USM3D has been extended in a separate
version for the low-speed flow regimes by implementing a local preconditioning approach [13]. Applications
with the code have demonstrated convergence behavior and solution quality that is nearly independent of the
Mach number.

Grid Adaptation

Generation of appropriate grids for CFD applications usually requires some prior knowledge of the problem
under consideration for adjusting the grid to the flow characteristics. Tailoring the grid is especially essentia for
the flow problems that exhibit prominent features, such as shock waves and vortices, whose accurate prediction
is susceptible to the local grid density. In the absence of adequate flow information in advance, a conscientious
CFD analyst often undergoes several iterative steps between grid generation and flow solution before obtaining
the desired result. Alternatively, a globally fine grid is usually generated to ensure the accuracy of the solution.
In both cases, the amount of time, effort, and computational resources become excessive for solving complex
problems. Even with a prior knowledge of flow features, such as the presence of vorticesin the flow field, it is
generaly difficult to manually adjust the concentration of grid points in 3D, for example, along the vortex path.
As will be seen in the examples presented in this paper, changing the grid resolution can drastically alter the
nature of the predicted vortex flow.

Automatic grid adaptation is an effective technique by which the grid readjusts itself to the flow through
severd iterations as the solution develops. Since the distribution of grid points is automatically determined
based on a feedback from the ongoing solution, the outcome of the process is a substantially improved mesh that
produces a much more accurate solution. In addition to automation and accuracy, adapted grids offer
computational efficiency since they contain considerably fewer elements than unadapted grids with comparable
local resolution at the crucial locations.

Although the adaptation of grid may appear a simple procedure in theory, its implementation has proven to be
nontrivial for solving general 3D problems. The success of an adaptive method depends on how accurately the
scheme 'picks' the flow features (requiring grid refinement) and how effectively the grid adjusts itself to the flow
without user's intervention. Although the subject has been of much interest in the CFD community for many
years, it remains an emerging technology even to date.

The present adaptive grid work was initiated at Langley as part of a project concerning the Euler technology
assessment for rapid simulation of nonlinear vortical flows experienced by high-performance military aircraft
flying at high angles of attack. It has also been implemented for automatic capturing of flow discontinuities at
transonic and supersonic flow regimes [14]. The method exploits the flexibility of unstructured grids and their
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convenience for post-processing modification. The grid refinement, in this method, is based on subdivision of
the surface mesh triangles and local remeshing of the volume grid. Starting with a reasonably coarse mesh and
the corresponding initial solution, the adaptation proceeds with an assessment of the current flow solution to
determine where in the field the solution requires further improvement. Once the regions of interest are
identified, the respective grid nodes and cells are removed creating voids in the mesh. If any portion of the
geometry is exposed in the empty pockets, the corresponding surface triangles are refined by subdivision. The
pockets are then locally remeshed with a modified (usually finer) grid resolution. Next, a new solution is
obtained on the modified grid followed by yet another grid refinement. The iterative process continues until
some prescribed criteria based on the solution accuracy are satisfied, or simply, after certain number of
adaptation cycles are performed.

The process of adaptive grid refinement is demonstrated on a hypothetical problem in Fig. 2. In this example,
avortex flow is assumed on a fighter configuration flying at a high angle of attack. For clarity, the process of
grid refinement is shown on the plane of symmetry displaying the triangular sides of the tetrahedrons. The initial
grid (Fig. 24), along with a corresponding flow solution, is supplied to the adaptive refinement scheme. Suppose
the adaptation procedure detects a vortex originated from the aircraft fore-body through an appropriate flow or
error analysis scheme (Fig. 2b). Typica of most CFD grids, the resolution of the initial mesh in this example is
adequate around the geometry but is too coarse in the field to resolve the vortex accurately. Following a flow
assessment, the grid elements experiencing abrupt variations in the flow (due to the vortex presence) are
identified and automatically removed leaving a void in the mesh as shown in Fig. 2c. The remaining grid points
and cells are then renumbered, and the void is remeshed using the restart capability of VGRIDns (Fig. 2d). The
process of adaptive remeshing is repeated several times before the final solution with the desired accuracy is
obtained.

Results

To evaluate the capability of the present unstructured-grid CFD methodology for solving vortical flow
problems, two test cases have been considered and their results presented in this paper. The first test was
performed on a simple 65-degree delta wing model with interchangeable leading edges. The emphasis of this
test is placed on the vortex-capturing capability of the present method in the absence of any additional flow
complications such as shock waves and/or geometry interactions with the vortices. Of particular interest was to
assess the ability of the method in predicting the onset of flow separation and vortex formation on blunt leading
edges as well as the vortex breakdown phenomenon. The second case concerns vortical flow over a more
complex configuration, an experimental high-performance fighter model. The purpose of this test was to study
the interaction of vortices with the airframe components. Both models have been tested in wind tunnels at the
NASA Langley Research Center.
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Figure 2. Demonstration of adaptive refinement steps by local remeshing for avortical
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(b) flow solution indicating aforebody vortex,

and (d) locally refined grid.

65-degree Delta Wing

A delta wing model with a leading-edge sweep of 65 degrees has been tested in the Langley Nationa

Transonic Facility (NTF) [15]. The objective of the experiment was to investigate the effects of Reynolds and
Mach numbers on vortex flows on a dender wing with different values of leading edge bluntness. The

untwisted

a trailing-edge

an interchangeable leading edge

and a sting fairing as shown in Fig. 3a. All the wing components are defined analytically and

uncambered wing consists of a flat plate section,

closure segment

presented in Ref. [15]. The model dimensions are specified by aroot chord (c) of 25.734 inches

of 24 inches

awingspan (s)

es, and a mean aerodynamic chord (MAC) of 17.156

a wing maximum thickness of 0.875 inch

small, medium,

degree bent sting connected to a stub sting (see Fig 3b). The

and 0.30 percent of the MAC and are designated as sharp,

0.15,

respectively. The wing has been supported in the tunnel with a model sting attached to the sting

inches. The model has been tested with four different leading edges attached to the flat section of the wing. The

leading-edge radii are 0.0, 0.05

and large,
fairing at the aft end of the geometry as well as a 10-

tabular and graphical formats. The normal force and pitching moment coefficients have also been measured in

experiments have produced extensive amount of surface pressure data, which are compiled and presented in
these tests by a force/moment balance. However,

the primary purpose of the force and moment measurements
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Figure 3. 65-degree Deltawing model assembly and support system.
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was to monitor the safety of the model support, and their accuracy might be considered inadequate for
aerodynamic analyses. Unfortunately, no off-body measurements or flow visualization data are available for
these experiments, making it difficult to determine the exact locations of the vortices and their potential
breakdowns near the model. The surface-pressure data set is open to the public and is accessible electronically
from the Langley Technical Report Server (LTRS).

To make the CFD geometry resemble the model in the tunnel as closely as possible, the computational grids
were generated on the complete configuration including the support system. However, the shape and dimensions
of the sting components were approximated based on the photographs of the model. From experience, such an
approximation has minimal influence on the accuracy of the solutions, as only the secondary effect of the support
system on aerodynamics of the model and the vortex formation was of interest. Figure 4 shows a sample initial
(unadapted) grid including triangulation on the wing model, sting, and part of the symmetry plane as well as a
cross-section of tetrahedral volume below the geometry. To minimize the effect of the far-field boundary on
accuracy of the solutions near the geometry, the outer boundaries were placed at 15 MAC's in the upstream,
downstream, upper, and lower directions and 7.5 MAC's in the semi-span direction. In addition, the stub sting
was extended downstream all the way to the outflow boundary.

Severa inviscid and viscous flow computations were performed for this case. The results include unadapted,
adapted, and "semi-adapted” solutions to study the grid sensitivity of the solution scheme with regard to the
vortical flow problems. The present adaptive grid capability is limited to the "inviscid" grids generated with the
advancing-front method. Therefore, only the grid segments at the vortex core outside the boundary layer were
adaptively refined for the viscous flow computations. Obviously, this type of partial grid adaptation (referred to
as semi-grid-adaptation) is not sufficient, especialy, for capturing the onset of flow separation and vortex
formation on blunt leading edges that require adeguate grid resolution on and near the surface. Work is currently
under way to develop a complete adaptive grid refinement capability for the Navier-Stokes cal culations.

KT
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Figure 4. Unstructured Euler grid on the 65° Delta wing showing triangular surface mesh and cross-
section of tetrahedral volume grid (352,011 cells).
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Sharp L eading-edge (Radius = 0.0 % MAC)

The first computation on the delta wing concerns an inviscid flow analysis of the wing with a sharp leading
edge. The flow condition is at a freestream Mach number of 0.4 and an angle of attack of 20 degrees. The
computation was performed on a semi-span, unadapted grid with 12,944 boundary nodes, 66,166 total nodes, and
352,011 tetrahedrons. No attempt was made to cluster extra grid points in the field at the vortex location. The
surface mesh on the upper surface of the wing is shown in the upper portion of Fig. 5. As evident, a finer grid
resolution has been prescribed at the edges of the wing, whereas the grid on the flat portion of the wing is nearly
uniform, typical of conventional (unadapted) grids. A corresponding flow solution on this grid is displayed in
the lower portion of Fig. 5. In thisfigure, the surface pressure distribution is represented by variation of colors
from red (indicating a higher pressure) to blue. The footprint of a leading-edge vortex on the surface is evident
from the low-pressure (mainly green and blue) region. The affected area extends from the wing apex to about 70
percent of the wing root chord where the surface pressure increases abruptly. Such a sudden change in pressure
distribution is indicative of the vortex burst. The CFD prediction of vortex breakdown at this location is aso
observed by examination of the flow properties in the field. Figure 6 illustrates a group of tetrahedral cells
indicating entropy levels in the current solution that are higher than a prescribed threshold. The "high" entropy
region remains confined to a relatively narrow segment of the grid concentrated around the vortex core and then
suddenly expands further downstream, which is an indication of the vortex breakdown.

Experience with earlier test cases had indicated that the vortex behavior is highly dependent on the local grid
resolution. To verify the earlier findings, the initial grid was adapted based on the entropy production in the field
as indicated by the initial solution. In other words, the grid cells experiencing higher levels of entropy than a
prescribed value (about 0.008 in this case) were flagged (Fig. 6) and remeshed with finer grid elements as
explained before. Figure 7 shows the grid and solution after the third iteration of adaptation. The surface grid,
on the upper portion of the figure, indicates the automatic grid refinement at locations that are affected by the
vortex. The adapted grid contains 24,328 nodes on the surface, 287,279 total nodes, and 1,612,307 tetrahedrons.
Comparing these numbers with those of the initial (unadapted) grid indicates that a large proportion of the new
nodes is placed in the field (along the vortex core.)) The corresponding surface pressure distribution, in Fig. 7,
shows a stronger footprint of the vortex on the surface as compared to that of the unadapted solution (Fig. 5).
More significantly, the character of the vortex breakdown appears to be changed drastically after adaptation as
indicated by the surface pressure distribution. Figure 8 displays the volume cells featuring high levels of entropy
production due to the vortex presence (similar to fig. 6). As evident, the vortex definition has considerably
improved (has become sharper) after adaptation, and the breakdown pattern has distinctively changed from that
resembling a "bubble" burst before grid refinement (Fig. 6) to a "spira” type breakdown after adaptation. It is
interesting that the present technique has not only resolved the vortex burst but captured the details of the vortex
structure after breakdown. In addition, the adapted solution has even predicted the sense of the spira breakdown
winding, which is opposite to the direction of rotation of vortex itself. Such a counter-rotating phenomenon has
also been abserved experimentally for leading edge vortices [16]. The composite imagesin Fig. 9 further reveal
the vortex structure and its breakdown. The vortices are represented in Fig. 9a by several cross-sections of
pressure contours and a number of particle traces (selectively seeded at the leading edge) swirling through the
vortex cores. The orderly structure of the vortices persists up to the onset of their bursts, at about two-third of
the wing root chord, where the pressure contours exhibit an asymmetric pattern, and the particle traces start
separating downstream. Figure 9b portrays a shaded iso-entropy surface, which clearly shows the leading edge
vortices and their "counter-winding" spiral breakdowns. Included in Fig. 9b is aso the surface pressure gradient
showing the footprint of the vortex.

As mentioned earlier, no wind tunnel visualization data is available to confirm the occurrence of the vortex
breakdown predicted by the present inviscid flow computation. In fact, the surface pressure measurements
appear to contradict the Euler result and show no sign of vortex burst for this case. To further investigate the
flow, a Navier-Stokes computation was performed on the same case at a Reynolds number (based on MAC) of
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through the vortex core
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Figure 9. Adapted Euler inviscid flow solution on the sharp leading-edge Delta
wing. M,=0.4, a=20°.
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6.0010°. The viscous grid for this run was generated with the knowledge of vortex location obtained from the
inviscid solution. Accordingly, more grid nodes were manually clustered both on the surface and in the field by
placing grid sources in appropriate locations where the Euler computation resolved the vortex. This strategy was
intentionally exercised to observe how well the manual tailoring of a grid would perform as opposed to
automatic grid adaptation. The grid contains 31,529 boundary nodes, 475,385 total nodes, and 2,720,797
tetrahedrons. The upper portion of Fig. 10 shows the surface grid with a fine distribution of nodes at the wing
leading edge and along the vortex trace on the surface.  The pressure distribution on the surface is shown in the
lower portion of Fig. 10. As evident, the viscous solution has produced a quite different flow pattern from that
shown in Fig. 7. Noticeably, no sign of vortex burst is evident over the wing as the low-pressure signature
extends to the trailing edge in the viscous solution. The abrupt change of color shade at the trailing edge is not an
indication of a vortex burst but is rather due to the trailing-edge closure that further diverges from the vortex
core. As mentioned earlier, the breakdown of a vortex is extremely sensitive to the flow properties such as the
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Figure 10. Unadapted refined grid (2,720,797 cells) and Navier-Stokes flow solution on the sharp
leading-edge Deltawing. M., =0.4, a=20°, Reyac =6.001 10°.

swirl ratio (circumferential/axial velocity component) [2] and the external pressure gradient in the axial direction
of vortex. Apparently, the Euler solution has created the critical condition that triggers the breakdown of the
vortex in this case, whereas the viscous effects have damped the adverse condition at the vortex core alowing it
to persist further downstream. While a definite explanation of this discrepancy is not clear to the author
presently, it may be argued that Euler solutions produce a stronger swirl ratio, causing the vortex to burst earlier
at the presence of an adverse pressure gradient. Another difference between the two solutions is the capability of
the Navier-Stokes computation in predicting the secondary vortex as indicated in Fig. 10 by a dim trail of low
pressure between the leading edge and the primary vortex. Furthermore, the primary vortex appears to be shifted
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dightly towards the wing root, as compared with the inviscid solution shown in Fig. 7. A profile of the field
grid/solution normal to the wing axial direction is shown in Fig. 11. The figure illustrates the cross-sections of
the wing, the tetrahedral grid, and the entropy contours, all at the mid-root-chord station. The high-aspect-ratio
"viscous' cells are visible in the boundary layer around the geometry. Indicated in the figure is al'so the manual
refinement of the grid points around the leading edge and at the vortex location. Although the grid was
generated with prior knowledge of the vortex location, the cluster of points (by means of source elements) has
clearly missed the vortex core due to a slight displacement of the vortex from that of the inviscid solution. This
experience signifies the importance of an automatic grid adaptation for vortex flows, which eliminates the need
for any "guess-work" in capturing the vortices. Figure 11 also depicts contours of entropy at the free vortex
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Figure 11. Cross-sections of sharp leading-edge Delta wing, unadapted refined grid, and entropy
contours showing the |eading-edge vortices at the mid-root-chord station.

sheet, around the vortex core, and in the boundary layer. A secondary vortex is clearly indicated rotating in the
opposite direction of the primary vortex. The distinct annular clusters of contours (concentric rings) around the
vortex core in Fig. 11 are due to superposition of two sets of contours (with dlightly different levels) for better
visualization and has no fluid dynamic significance. Figure 12 displays 3D views of the wing and vortices
similar to those in Fig. 9. The drastic change of flow behavior from inviscid to viscous computation is clearly
illustrated in these figures. The absence of vortex burst in the viscous result is indicated by the axisymmetric
distribution of pressure around the vortex core, extended further downstream in Fig. 12a, and the undisturbed
iso-entropy tubes in Fig. 12b. The strong entropy generation at the free vortex sheet is aso shown by the iso-
entropy surface in Fig. 12b. The distributions of surface pressure coefficient (Cp) in the spanwise direction (y/b,
where b is the local semi-span) are depicted in Fig. 13 for five chordwise (x/c) stations. In these plots, the wind
tunnel experimental data are compared with the inviscid-unadapted, inviscid-adapted, and viscous-fine-grid
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2) pressure contours and particle traces passing
through the vortex core

unburst vortex

free vortex sheet

(b) iso-entropy surface showing |eading-edge vortices and segments of free vortex
sheets, aswell as surface pressure showing footprint of the vortex

Figure 12. Viscous flow solution on the sharp leading-edge Deltawing. M, =0.4, a=20°,
Rewiac =6.000 10°.
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Figure 13. Comparison of spanwise surface pressure coefficients for the 65-degree Delta
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results for both upper and lower surfaces of the wing. All computational results show good agreement with the
experimental measurements on the lower surface in all stations. Similarly, the computational pressure data agree
well with the wind tunnel measurements at the inboard section (close to the wing root) on the upper surface
everywhere except for the inviscid solutions at the last (x/c=0.95) station. The unadapted Euler computation has
produced a poor solution in which the vortex is under-predicted in the upstream stations due to coarseness of the
grid. In the last station, the predicted vortex burst has caused a shift in the Cp distribution on the low-pressure
side across the semi-span with a peak region that is completely out of place compared to the experiment data.
The adaptive refinement has improved the Euler solution considerably, however the result still mismatches the
wind tunnel data as expected from inviscid solutions. Asillustrated in Fig. 13, the solution increasingly deviates
from the experimental data in the chordwise direction, from apex to trailing edge of the wing. The last two
stations demonstrate the largest discrepancies due to the computed vortex breakdown. Another obvious weakness
of the inviscid solutions is their failure of predicting the secondary vortex as indicated by the monotonic decline
of Cp curves near the leading edge (see, for example, the Euler Cp curves at Station x/c=0.60.) The Navier-
Stokes computation has further enhanced the accuracy of the predicted surface pressure distributions as shown
by the solid curvesin Fig. 13. As evident, both the magnitude and location of the vortex peaks are substantially
improved in all stations by the viscous effects, and the secondary vortex is indicated by a smaller peak near the
wing leading edge.

Medium L eading-edge (Radius = 0.15 % MAC)

To further study the capability of the present CFD method in predicting vortex flows, the Delta wing with
blunt leading edges was also computed at the same flow condition. While the primary separation line is fixed at
the sharp leading edge as in the preceding case, its location on the blunt edge is unknown and becomes part of
the problem to be resolved by the CFD method. Computation of vortex flows on such configurations presents a
greater challenge for CFD since the problem is more dependent on the flow physics (e.g., Reynolds number
effects) rather than geometric features. The main objective of this test was to investigate the effectiveness of the
Navier-Stokes solution in "capturing” the leading-edge flow separation and vortex formation. Therefore, no
attempt has been made to perform Euler computations for the following blunt leading-edge cases.

A surface mesh similar in resolution to that of the preceding viscous grid was generated for this test case
having a leading edge of medium radius. Although the surface mesh was refined around the leading edge as in
the previous case, no manual refinement of the volume grid at the vortex core was carried out for thisinitial grid.
The grid contains 31,938 boundary nodes, 300,227 total nodes, and 1,689,852 tetrahedrons. Figure 14a portrays
the surface grid with a fine resolution on the leading edge and aong the footprint of the vortex on the upper
surface of the wing. The figure also shows the pressure distribution on the upper surface similar to the other
cases. The influence of the leading-edge bluntness on the vortex flow can easily be observed from a delayed
formation of the vortex on the wing by about 26 percent of the root chord. While the sharp leading edge induces
flow separation (and vortex formation) up front at the wing apex, the blunt edge restrains the boundary layer for
some distance downstream of the apex before it eventually separates and forms a vortex. Another noticeable
effect of the blunt leading edge is on the strength of the generated vortices. The primary vortex appears smaller
than that in the sharp leading-edge case, but the secondary vortex is as strong. Asin the case of sharp leading
edge, no sign of vortex breakdown is evident from the surface pressure representation.

As mentioned earlier, a capability of automatic adaptation of thin "viscous' layersis not available at thistime.
However, the primary feature of the vortex flow usually develops outside the boundary layer at high angles of
attack. Therefore, it is possible to adapt the inviscid portion of the grid around the vortex core without altering
the viscous portion. A major deficiency of this procedure is that both the viscous portion of the grid and the
surface mesh remain intact. Obviously, the lack of surface mesh refinement would adversely affect the computed
surface pressure. In the next run, the initial grid was partially adapted using the entropy increment as before.
The final grid has 31,938 boundary nodes (unchanged), 696,412 total nodes, and 4,000,156 tetrahedrons. Figure
14b shows the surface grid and the solution after adaptation. Although the surface mesh remains unchanged, the
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Figure 15. Comparison of viscous flow solutions on medium leading-edge Deltawing at the
mid-root-chord stations: (a) unadapted grid and (b) inviscid portion of grid refined
adaptively. M,,=0.4, a=20°, Reyac =6.001 10°.

surface pressure indicates some improvement (increased strength) of the primary vortex. Figure 15 illustrates
cross-sections of the grids and solutions at the mid-root-chord station before and after adaptation. The initial
solution is shown in Fig. 153, indicating a diffused vortex system. The partial adaptation has added many grid
nodes at the primary and secondary vortex locations and has consequently strengthened the vortex structure as
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seen in Fig. 15b. A comparison of this solution to that shown in Fig. 11 suggests that the edge bluntness has
created a smaller primary vortex and has moved the vortex cores closer to the surface and further inboard away
from the leading edge.

The surface Cp distributions for the medium leading edge are presented in Fig. 16. The plots display the
results of theinitial and adapted solutions compared with the experimental data at the same chordwise stations as
before. Both the initial and adapted solutions have failed to capture the leading edge vortex at the first station
(x/c=0.20). The onset of the vortex is predicted dightly downstream of this station at about x/c=0.23 as evident
from the surface pressure plots in Fig. 14. The reason for the delay in the computed vortex formation is
presently unclear to the author. Possible causes include coarseness of the initial surface grid (unrefined by the
partial adaptation) at the leading edge and some solution techniques employed in the flow solver such as the
turbulence model, wall function, lack of laminar-to-turbulence transition, etc. Further investigation of the
predicted rate of growth of vortices on blunt leading edges is planned for future in conjunction with a work on
implementation of the full "viscous' grid adaptation method. At other stations, the partial adaptation has
considerably improved the prediction of the primary vortex where most of the new grid nodes are inserted
adaptively. However, the partial adaptation has not enhanced the solution accuracy at the secondary vortex
location (near the boundary layer) where the viscous portion of the grid remains unrefined.

Large Leading-edge (Radius = 0.30 % MAC)

The last test on the Deltawing was performed on the model geometry with aleading edge of large radius. As
in the preceding blunt-edge case, an initial grid was generated with manual concentration of nodes around the
leading edge but not in the field. This grid contains 33,014 boundary nodes, 326,096 total nodes, and 1,839,186
tetrahedrons. The surface grid, along with the corresponding surface pressure distribution, is depicted in Figure
17a. After a partia adaptation, the total node and cell counts increase to 819,482 and 4,718,896, respectively,
but the surface grid remains intact. Figure 17b shows the adapted surface mesh and the corresponding solution
on the surface. The surface pressures in Fig. 17 indicate that the onset of the vortex is further delayed to about
40 percent of the root chord because of the increased leading-edge bluntness. Unlike the medium leading-edge
case that has demonstrated a solution enhancement due to adaptation, the present case shows no visual sign of
major change in the surface pressures before and after adaptation.

Figure 18 portrays the cross-sections of the initial and adapted grids along with the corresponding entropy
contours. As evident, the free vortex sheet makes a smaller angle with the wing surface in this case as compared
with the preceding cases, and the primary separation point has moved further inboard away from the leading
edge. In addition, the primary vortex has become even smaller and moved closer to the surface as compared
with the medium leading-edge case. As shown in Fig. 18b, a large number of nodes has been added by the
partial adaptation around the primary vortex core (except at the lower portion) and above the secondary vortex
outside the boundary layer. Because of the smaller size of the vortices and their closer proximity to the surface in
this case, a larger proportion of the area influenced by the vortices falls in the unrefined viscous grid portion.
This undesirable condition may explain why the partial grid adaptation has been less effective in improving the
surface pressure for this case and indicates the limitation of partial grid adaptation.

Figure 19 shows 2D plots of the surface Cp distributions for the large leading-edge case. As expected, the
partially adapted solution presents marginal improvement in the surface pressure distribution. However, the
overal quality of the CFD solutions is reasonably good considering the present limitation of the adaptive
refinement method for viscous flow computations, and the complex nature of vortex flows on blunt leading
edges. Both computations agree with the experimental data regarding the absence of the vortex at the first
station (x/c=0.20). The largest discrepancy between the CFD and experiment data appears at Station x/c=0.40
where the vortex peak is under-predicted computationally. A close review of Fig. 17 reveals that the start of the
vortex is computed at about 40 percent of the root chord (the second station) where the signature of the vortex on
the surface is highly diffused. The peak is dlightly delayed to about 45 percent of the root chord, asindicated by a
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Figure 16. Comparison of panwise surface pressure coefficients for the 65-degree deltawing
with amedium radius leading edge at M., = 0.4, a = 20.0 degrees, and Reyac = 6.00] 10°.
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low-pressure (green) spot in Fig. 17b. The agreement between the CFD and experimental data is better in other
stations as illustrated in Fig. 19. Figure 20 compares the vortex flows predicted by the Navier-Stokes solutions
on the three leading edge cases. In this figure, velocity vectors are plotted on cross-sectional planes at the wing
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mid-root-chord station. The images indicate that the size of the primary vortex decreases as the radius of the
leading edge increases. The cross-flow velocity profiles in the boundary layer, induced by the primary vortices,
are also illustrated in these figures. The velocity vectors clearly show the secondary separation points followed
by the boundary-layer reversed flows forming the secondary vortices. Another interesting flow feature, revealed
by these plots, is the presence of a third vortex rotating in the same direction sense of the primary vortex and
located close to the leading edge (see, for example, Fig. 20b). This additional vortex, along with the secondary
vortex, has caused a "double-hump" characteristic in the computational Cp curves at the mid-root-chord station
around y/b=0.9 (Figs. 13, 16, and 19). Although a tertiary vortex is normally located between the primary and
secondary vortices (see Fig. 1), experiments have shown that in some cases a third vortex (also called tertiary)
develops between the free vortex sheet and the secondary vortex [17]. In the absence of any off-body
experimental data, it is difficult to verify the CFD prediction of a third vortex in this case. However, the
experimental Cp data exhibit similar double-hump behavior at some locations which may indicate the existence
of two small vortices close to the leading edge (see, for example, the experimental Cp distribution at x/c=0.60 in
Fig. 16.

Modular Transonic Vortex Interaction Configuration

The second test case concerns a generic fighter model referred to as the Modular Transonic Vortex Interaction
(MTVI) shownin Fig. 21. The geometry has been tested in the NASA Langley 7- by 10-foot High Speed Tunnel
for a speed range of subsonic to low supersonic and at a wide range of angles of attack [18]. The geometry has
also been tested in the Langley Unitary Plan Wind Tunnel for supersonic speeds up to Mach number 2.16
(unpublished at the time of preparing this paper). The experiments provide an excellent database for CFD code
validation and investigating the leading-edge vortex interaction with the airframe components as well as their
interference with shock waves on a redlistic fighter configuration. The extensive amount of experimental data
includes surface pressure measurements, force/fmoment data, and flow visuaization both in the form of till
images and movies.

The MTVI geometry consists of a chined forebody, a 60° cropped delta wing with a segmented |eading-edge
flap, and two different interchangeable vertical tails: single centerline and twin outboard. A photograph of the
model with both types of vertical tails (mounted for demonstration) is shown in Fig. 21a. In addition, two types
of fuselage cross-sections have been tested on this configuration: baseline with a forebody chine angle of 30
degrees and a large chine with an included angle of 100 degrees (Fig. 21b). The configuration features sharp
edges on the chine and the wing that induce leading-edge flow separations and vortices at high angles of attack.
As explained earlier, such a geometric feature makes the case suitable for inviscid flow computations. The
numerical results presented in this paper are limited to adaptive inviscid Euler solutions. Additional flow
computations on this model, planned for future work, will include adaptive Navier-Stokes results.

Two inviscid Euler computations were performed on the MTVI configuration at angles of attack of 20 and 30
degrees. These two cases were selected to demonstrate the vortex behavior at different conditions, such as angle
of attack, and its interaction with airframe components. As in the preceding case, a subsonic flow regime at a
freestream Mach number of 0.4 was considered for this test to eliminate the possibility of shock/vortex
interactions.

The first computation was performed at an incidence of 20° on the model ssimulated with partially deflected
leading-edge flaps, twin vertical tails, and the aft portion of fuselage extended by one body length to simulate the
sting. The initial grid on half of the mode contains 31,565 nodes and 163,619 tetrahedral cells that marginally
resolve the main features of the flow. No attempt has been made to cluster grid points at locations where
vortices are expected. After three levels of adaptation, the grid is appropriately refined at the critical locations
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based on an entropy indicator. The final grid contains 108,014 nodes and 564,727 cells. Figure 22aillustrates a
composite image of the surface triangulation for the initial coarse grid (port) and after three cycles of adaptation
(starboard) side by side. The cross-sections of the initial and adapted volume grids are shown at a streamwise
station ahead of the vertical tails in Fig. 22b. The automatic refinement of the surface and volume grids, as
adapted to the chine and wing vortices, is clearly indicated in these figures. The corresponding initial and

=Q> )

30°
(b)

Baseline fuselage Large chine angle fuselage

Figure 21. Modular Transonic Vortex Interaction (MTVI) configuration: (a) wind tunnel model and
(b) two types of fuselage forebody cross-sections.
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Figure 22. Initia (163,619 cells) and adapted (564,727 cells) unstructured grids on the MTVI
configuration: (a) surface mesh and (b) surface/volume grid.
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adapted solutions on the surface and in the field are displayed in Fig. 23. As evident, the adapted solution has
produced sharper footprints of the wing and chine vortices on the surface as indicated by the pressure distribution
in Fig. 23a. A cross-section of the pressure distribution in the field in front of the vertical tails, along with the
surface pressure, is portrayed in Fig. 23b. The well-defined vortex system generated by the sharp leading-edge
of the deflected flap and even a smaller vortex emanating from the wing snag have been captured with grid
adaptation as shown in Fig. 23b (starboard). The unadapted solution, on the port side of Fig. 23b, indicates a
diffused vortex system due to coarseness of the grid around the leading edge.

The adaptive refinement of the grid, in this example, has not only resolved the details of vortex structure but
also predicted the onset of a chine vortex breakdown in front of the vertical tails. Figure 24 shows local
refinement of the volume grid (open pockets) at the vortex locations at two different stages of adaptation. A
refinement of the initial grid, triggered by the first solution, indicates a chine vortex extending beyond the
aircraft tail (Fig. 24a). However, it is known from experimental observation on a similar case that the chine
vortex bursts before reaching the vertical tail. Therefore, the initial computation has provided an inaccurate
solution to the problem. After three cycles of grid adaptation, the final solution correctly predicts the breakdown
of the chine vortex in front of the vertical tail. Figure 24b shows regions of high entropy in the fina grid
(flagged cells) at locations where the chine and wing vortices reside. The termination of flagged cells ahead of
the vertical tail is indicative of the vortex breakdown. Similarly, the absence of a chine vortex signature on the
cutting plane in Fig. 23b (starboard) confirms the burst of the vortex in front of the vertical tail. In contrast, the
initial solution in Fig. 23b (port) shows a strong chine vortex at the same location.

As mentioned earlier, a similar formation of the chine and wing vortex system on the MTVI model has been
observed in the wind tunnel as shown in Fig. 25. The photograph, which is actually a clip of a movie showing
the movement of the laser sheet back and forth, also confirms the breakdown of the vortex in front of the vertical
tail where the laser sheet stands. The computations, in this case, have again demonstrated the importance of
automatic grid adaptation for producing accurate solutions to vortical flow problems.

A second computation was performed on a slightly modified MTVI configuration at an incidence of 30
degrees and a Mach number of 0.4. The rearward extension of fuselage, acting as a sting in the preceding
computation, was removed since further study indicated insignificant effect of the sting on the vortical flow in
this case. In addition, the wing leading-edge flap was modeled undeflected for the new grid to match the
configuration tested in the wind tunnel. The final adapted grid contains 189,761 nodes and 1,049,716 cells.
Figure 26 illustrates the cells with high entropy contents at locations of the vortices originating from the chine
and the wing leading edges. As evident, both vortices are distinctly captured in this case by grid adaptation.
Unlike the preceding case in which the chine vortex bursts before reaching the vertical tail, the present condition
promotes further extension of the vortex downstream. The chine vortex continues until it impinges on the vertical
tail where it eventually breaks. For comparison, a photograph of the MTVI tested in the wind tunnel at the same
conditions is presented in Fig. 27. The vortex flow structure in this photograph strikingly resembles the
computational simulation illustrated in Fig. 26. Both images show that the chine vortex breakdown is delayed
until it hits the vertical tail and that the wing vortex bursts above the tail.

Unlike the Euler computation in the Delta wing case that did not match the experimental data with regard to
prediction of vortex breakdown, the present inviscid approximations on the MTVI have indeed produced
remarkably good solutions. Further Navier-Stokes computations on the MTVI are planned for future work.

The feature indicator employed in both MTV1 cases was based on an entropy measure similar to that used for
the Deltawing tests. Grid elements experiencing entropy levels of higher than a threshold (a small fraction of the
maximum entropy produced in the field) were flagged for removal at each adaptation cycle. In the present cases,
typical cut-off values ranging from 0.01 to 0.08 have been prescribed to locate vortices and their breakdowns.
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Figure 23. Initial and adapted static pressure distributions on the MTV1 configuration:
(a) surface and (b) surface/volume. M.,=0.4, a=20°.
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Figure 24. Local grid refinement at high entropy regions on the MTVI
volume grid: (@) initial grid and (b) final adapted grid indicating the
chine vortex burst.

chine vortex

chine vortex burst

wing vortex

Figure 25. Wind tunnel visualization of flow around the MTVI
configuration showing chine vortex burst at M,=0.4.
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chine vortex

chine vortex burst

wing LE vortex

Figure 26. Adapted grid (1,049,716 cells) showing computed chine and wing vortices and their
breakdowns on the MTVI configuration, M.=0.40, a=30°.

chine vortex

wing LE vortex

chine vortex burst

Figure 27. Experimental visualization of vortical flow around the MTVI configuration, M,=0.40,
a=30°.
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Concluding Remarks

An unstructured-grid CFD methodology has been applied to two vortical flow test cases. The methodology is
based on proven, existing computational techniques and has recently been extended for solution adaptive grid
refinement. The "pilot" technology has demonstrated excellent potential for solving vortical flow problemsin an
efficient and practical manner. The objective of the present computations was to concentrate on the vortex
capturing capability of the method in the absence of additional flow complexities such as shock waves.
Therefore, both computations were performed at subsonic flow regime. The results indicate that the present
adaptive grid refinement significantly improves the accuracy of vortical flow solutions as well as the automation
of computations. Although the efficiency aspect of adaptation has not been addressed in this paper, earlier
studies have demonstrated substantial enhancement in the computational economy achieved by reducing the grid
size (total number of grid elements) while increasing the local grid resolution. Additional conclusions drawn
from the present study are summarized below.

1) CFD hasmatured to alevel where it can play a significant role in investigating complex vortical flows.

2) The present computations demonstrate that the Euler assessment of vortical flows can provide accurate
prediction of vortex location and breakdown in certain cases (e.g., MTVI). However, one should be
cautious in applying the inviscid methodology to general problems as it may exhibit misleading vortex
flow characteristics as demonstrated with the Delta wing even with the sharp leading edge.

3) Vortex flows at high angles of attack often involve additional viscous dominated features, such as large
regions of flow separation, which can influence the vortex behavior. Accurate solution of such flows
regquires advanced CFD methods based on the Navier-Stokes equations.

4) The accuracy of vortex flow computations, especially those featuring vortex breakdowns, is highly
susceptible to the local grid resolution. Therefore, the implementation of automatic adaptive refinement is
essential for such problems.

5) Vortex flows induced by blunt leading edges present an even greater challenge to CFD. Thisis due to a
strong sensitivity of the leading-edge flow separation to computational factors such as turbulence models,
laminar-to-turbulent transition, and other numerical elements that influence the accuracy of predicted
flow separation. Application of solution adaptive grid refinement is even more critical for such cases.

6) An automatic adaptive grid technique should be capable of resolving the grid not only around the vortex
core but also in the boundary layer and on the surface for maximum effectiveness.

Additional work is required to mature the present pilot technology and extend its capabilities. Further
developments, planned for future work, include extension of the method for full Navier-Stokes adaptive grid
refinement and implementation of better error/feature indicators for grid adaptation in problems involving
multiple dominant flow features such as vortices and shock waves. The present work on the Delta wing
represents one of the few attempts to compute vortex flows on blunt leading-edge wings. The majority of
computational research in the literature is on delta wings with sharp leading edges. Further work is required to
validate CFD capabilities for predicting complex vortical flows on realistic configurations with rounded edges.
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Paper: 13
Author: Dr. Pirzadeh

Question by Dr. Hummel: First let me comment that we have now seen the second contribution to
VFE2. Thefirst contribution isthe datain NASA TM 4645 (Dr. Luckring), and now we have these
numerical calculations (Dr. Pirzadeh). Congratulations. Question: Has a symmetry condition been
used?

Answer: Yes. The breakdown location is symmetrical (artificialy).

Question 2: Extension to the case without a symmetry condition could lead to results with axial
movements of the breakdown positions. Do you have plans for this?

Answer: Those computations will be done.
Question by Mr. Cross: For the deltawing configuration you start your adaptive gird Navier-Stokes

solution using the grid for an Euler calculation. How can then you be sure that the Navier-Stokes
solution with its different vortex structure is not affected by the Euler solution?

Answer: The Navier-Stokes grid for the sharp leading edge case was not adapated automatically. The
grid was generated from scratch by placing grid source elements in approximate locations where the
primary vortex and its footprint on the surface were expected. These locations were selected by an
“educated” estimate based on the preceding Euler solution. Although the position of the “ Navier-
Stokes” vortex core did not match the locations of the newly inserted sources exactly, the grid was
adequately refined in the area of interest. The source elements usually cover an extended area around
them. Therefore, the effect of this slight mismatch between the positions of sources and the vortex core
is expected to be minimal.

Question by Dr. Tai: What's the convergence history for the flow involving vortex breakdown?

Answer: For the first few iterations of adaptive refinement, the solutions were not fully converged.
However, the last iterative solution was converged by monitoring the convergence history and the plots
of lift and drag vs. number of cycles. Full convergence for typical Euler computations is obtained
within 800-1000 cycles of flow solution. For viscous, Navier-Stokes solutions the number of cyclesis
2000-3000.
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